Что такое гидроэнергия, ее источники, плюсы и минусы

Что такое гидроэнергия, ее источники, плюсы и минусы

Что такое гидроэнергия, ее источники, плюсы и минусы
0
27
27.03.2020

Функционирование независимой от энергосети станции.

Вариант 1.

Выработка водорода, для последующего его использования.

В этом варианте, вся «бесплатная» энергия станции направляется на выработку жидкого водорода, который впоследствии перевозится танкерами к месту потребления. Такая схема прорабатывается для проектируемой Пенжинской приливной станции.

Какие минусы у такой схемы?

  • Большие затраты на саму станцию. Станция должна быть очень мощная, чтобы был смысл начинать такой проект. (Для Пенжинской ПЭС инвестиции, только в саму станцию, оцениваются в сотни миллиардов долларов, мегапопил);
  • Чтобы не терять энергию на сизигийных пиках, мощность водородного завода придется устанавливать по максимальной мощности выработки станции. В результате коэффициент загрузки мощности завода, будет равен КИУМ станции, то есть на уровне 20%. Это, конечно же, будет не эффективно;
  • Большие затраты, по строительству дорогостоящей портовой инфраструктуры и инфраструктуры промежуточного хранения водорода;
  • Дорогостоящая перевозка жидкого водорода;
  • Ограниченный рынок сбыта жидкого водорода;
  • Большая энергоемкость процесса электролиза.

Я склоняюсь к мысли, что в настоящее время, подобные проекты в принципе не могут быть эффективными.

Вариант 2.

Промышленное использование энергии в месте выработки.

Данный вариант также не является возможным. Большинство крупных промышленных потребителей электричество используют энергию в непрерывных процессах. Но даже если удастся подобрать производство, с возможность четыре раза в день останавливать работу, никого не устроит десятикратная внутримесячная разница в объеме энергии. Любой завод, работающий в таком режиме, будет планово убыточным или, как минимум, намного менее прибыльным чем заводы конкурентов.

Использование энергии уровня воды

Использование энергии приливов было реализовано во Франции (240 МВт в устье реки Ранс, начиная с 1966 года), Канаде (20 МВт в Аннаполисе в Заливе Фанди, начиная с 1984 года) и России (Белое море, 1,7 МВт) и может быть реализовано в некоторых других областях где есть большой прилив.

Приливная вода может использоваться для вращения турбин, когда она будет выпущена через приливное заграждение в любом направлении.

Уход воды – отлив

Приход воды – прилив

Во всем мире эта технология, как представляется имеет определенный потенциал, главным образом из-за экологических ограничений. Некоторые утверждают, что таким образом тормозится врущение Земли.

Однако свободностоящая турбина при крупных прибрежных приливных течениях, как представляется, имеет большой потенциал и энергия приливов в настоящее время изучается и применяется.

Средняя скорость приливной волны 2-3 метра в секунду является идеальной для преобразования кинетической энергии волны. Это означает, что 1 МВт можно выработать на приливных турбинах где ротора меньше 20 м в диаметре, по сравнению с 60 м на 1 МВт ветровых турбин. Турбины приливных волн меньше, чем ветряные турбины и расположены ниже поверхности и избегают ущерба от бури.

Приливные электростанции

  • первая приливная электростанция была Ранс приливная электростанция построена в течение 6 лет с 1960 по 1966 в Ла-Ранс, Франция. Она имеет мощность 240 МВт.
  • самая мощная в мире в Южной Корее  приливная энергетическая установка в мире Sihwa Lake Tidal 254 МВт. Строительство было завершено в 2011 году;
  • в Канаде Annapolis Royal в 1984 году на входе в залив Фанди мощность 20 МВт;
  • приливная электростанция Jiangxia, к югу от столицы провинции Чжэцзян города Ханчжоу в Китае действует с 1985 года с текущей установленной мощностью 3,2 МВт;
  • в Северной Ирландии вводена в строй первый коммерческий прототип приливной электростанции SeaGen. Она производит мощность 1,2 МВт 18-20 часов в день и управляется дочерней компанией Siemens, введена в эксплуатацию в конце 2008 года на Странгфорд Лох;
  • индийский штат Гуджарат строит первую в промышленных масштабах приливную электростанцию в Южной Азии. Компания Atlantis Resources планирует установить 50МВТ приливную ферму в заливе Кач на западном побережье Индии.

Некоторые генераторы приливного потока не вращаются, а колеблются, используя приливные потоки для перемещения гидротурбин вверх и вниз. Прототип был установлен у берегов Португалии.

Другой экспериментальный дизайн использует для ускорения потока вентиляционное отверстие, в котором размещается турбины. Так используется энергия морских течений. Этот принцип был опробован в Австралии и Британской Колумбии.

Волновые электростанции

Энергия волн океанов превосходит по удельной мощности как ветровую, так и солнечную энергию. Средняя мощность волн океанов и морей превышает 15 кВт на погонный метр, а при высоте волн в 2 метра, мощность может достигать и все 80 кВт на погонный метр.

При преобразовании энергии волн, эффективность может существенно превышать прочие альтернативные способы, такие как ветряные и солнечные электростанции, достигая коэффициента полезного использования в 85%.

Энергию из морской качки можно получить, преобразовав колебательное движение волн вверх и вниз в электрическую энергию посредством генератора. В простейшем случае генератор должен получать вращательный момент на вал, при этом промежуточных преобразований не должно быть много, а большая часть оборудования должна находиться по возможности на суше.

Первый промышленный вариант волновой электростанции, построенный шотландской компанией Pelamis Wave Power, был запущен в эксплуатацию в 2008 году в 5 километрах от берега в городе Повуа-ди-Варзин, в районе Агусадора в Португалии. Электростанция называется Pelamis P-750. Она состоит из трех одинаковых конвертеров, качающихся на волнах Атлантического океана, и вырабатывающих вместе 2,25 МВт электрической энергии. Каждый конвертер состоит из четырех секций.

Конвертеры имеют длину по 120 метров, диаметр 3,5 метра, а весят по 750 тонн. Эти конструкции змеевидной формы похожи на плавающие составы из четырех вагонов, или на морских змей, как их называют местные жители.

Каждая секция содержит гидравлический мотор и генератор. Гидравлические моторы приводятся в движение маслом, которое двигают поршни, управляемые, в свою очередь, движением стыков конструкций на волнах вверх и вниз. В стыках расположены специальные силовые модули, разработанные так, чтобы поршни работали наиболее эффективно.

Гидравлические моторы вращают генераторы, которые в свою очередь вырабатывают электричество. Электроэнергия подается на берег через силовые кабели. Этой энергии достаточно для обеспечения 1600 домов прибрежного городка Повуа-ди-Варзин.

В 2009 году у берегов Оркнейских островов, в северной части Шотландии, было запущено еще одно уникальное сооружение, вырабатывающее энергию благодаря волнам Северного моря. Это разработанный и построенный эдинбургской компанией Aquamarine Power, генератор «Oyster», что в переводе означает «Устрица».

Проект представляет собой большой поплавок-насос, который раскачивается волнами вперед и назад, и приводит, таким образом, в движение двухсторонний насос, расположенный на дне, на глубине около 16 метров.

Интересное  Разрушение озонового слоя

Особенность конструкции в том, что вся электрическая часть устройства вынесена на берег, а связь между этими двумя частями – поплавком-насосом и береговой электростанцией – осуществляется через трубу, по которой морская вода под давлением устремляется к гидроэлектрогенератору.

Эта станция питает электроэнергией несколько сотен домов, а максимальная мощность, которую может развить система, составляет 600 кВт.

В Aquamarine Power уверены, что проект «Oyster» является лишь первым шагом. В компании подумывают о создании парка из 20 таких агрегатов, которые могли бы вырабатывать мегаватты электроэнергии для обеспечения 9000 частных домов. Еще одним вариантом может быть постройка комплекса из нескольких поплавков-насосов, работающих на одну мощную береговую гидроэлектрическую турбину.

В том же 2009 году в Великобритании, у побережья Корнуолла, началось строительство комплекса волновых генераторов Wave Hub, которые соединяются с берегом при помощи силового кабеля. Комплекс генераторов марки PowerBuoy, американской компании Ocean Power Technologies, работает за счет вертикального перемещения поплавков, которые скользят по колоннам, заякоренным у дна. Глубина, где установлены колонны, составляет 50 метров, а общая мощность системы из 400 буев составит в итоге 50 МВт.

Это крупнейшая волновая электростанция в мире, и ее строительство должно длиться по плану в течение 5 лет. Буи расположены в море начиная с расстояния 16 километров от берега, где расположен городок Хейли, и дальше, на протяжении 1800 метров, должны размещаться в общей сложности 400 таких буев. Проект постоянно (до сих пор) развивается, а данные о технических характеристиках везде разнятся. По последним неофициальным данным, достигнута максимальная мощность в 20 МВт.

Электрический ток от каждого буя передается по проводам на подводную подстанцию, от которой силовой кабель передает электроэнергию на сушу.

Плюсы и минусы ветроэнергетики

Офшорные ветроустановки

Очевидным плюсом ветроэнергетики является фактическая бесконечность ресурсов: пока на планете имеется атмосфера и светит Солнце, будет и движение воздушных масс, которое можно использовать для получения энергии.

Еще один несомненный плюс: экологичность. Ветряные электростанции не выделяют никаких вредных веществ, не загрязняют окружающую среду. К сожалению, их все же нельзя назвать полностью экологически безопасными, так как ветроэнергетическая установка довольно шумная, и поэтому в Европе законодательно установлен предельный уровень шума для дневного и ночного времени, который ветряные электростанции не должны превышать. Кроме того, работу ветряных электростанций приходится останавливать во время сезонного перелета птиц (на данный случай в Европе также имеется законодательное ограничение). В России подобных ограничений нет, но ветряные электростанции не располагаются поблизости от жилых домов – исходя из удобства населения.

Наряду с таким плюсом, как неисчерпаемость энергетического источника, идет и минус: эффективность работы ветряной электростанции зависит от времени года, времени суток, погодных условий и географического положения. К сожалению, скорость ветра изменяется в зависимости от всех этих параметров, а так как энергия ветра является кинетической, то она напрямую связана со скоростью (Е = m×v2/2) – чем выше скорость, тем, соответственно, больше энергии вырабатывает ветроустановка. Поэтому ветряные электростанции приходится использовать обычно вместе с другими источниками энергии, а также пользоваться аккумуляторами, которые принимали бы избыток энергии в ветреные дни и отдавали бы во время штиля.

К плюсам ветряных электростанций можно отнести и быстроту возведения ветроустановки: даже для промышленной установки требуется не более двух недель, учитывая время, затраченное на подготовку площадки, ну а бытовой ветро-генератор, пригодный для снабжения энергией частного дома или коттеджа, устанавливается за считанные часы.

Иногда к минусам ветряных электростанций относят довольно большую площадь, которую занимают ветроустановки (электростанция может содержать сто и более ветроэнергетических установок). Однако, наряду с наземными ветряными электростанциями, сейчас устанавливаются и прибрежные (их существенным плюсом является стабильность работы – за счет морских бризов), шельфовые (находятся в море на значительном удалении от берега (10-60 км), не занимают земельные участки, весьма эффективны, так как морские ветры регулярны и обладают значительной скоростью).

Низконапорные ГЭС

Хотя ПЭС имеют ограниченное применение, научные исследования, проведенные в рамках работ по их созданию, дали результаты, которые, ни много, ни мало, способны уже в ближайшем будущем изменить облик гидроэлектроэнергетики. Речь идет о гидроагрегатах, способных вырабатывать электроэнергию при малом напоре воды.

Например, сейчас ведутся разработки по созданию волновых ГЭС, то есть электростанций, использующих энергию морских волн, в том числе и на базе ортогональных турбин. Но самым перспективным направлением являются так называемые низконапорные ГЭС, устанавливаемые на реках.

Низконапорная ГЭС позволяет вообще обойтись без плотины (если она установлена на реке с быстрым течением), либо ограничиться установкой небольшой плотины, не приводящей к значительному затоплению окружающих пространств. Так же, как и ПЭС, низконапорные ГЭС отличаются большей выживаемостью мальков рыб. И, самое главное, низконапорные ГЭС можно строить на небольших речках, где возведение традиционных ГЭС невозможно в принципе.

Таким образом, низконапорные ГЭС дают те же самые преимущества, что и использование энергии ветра и солнца: приближение генерации к потребителю, почти полное отсутствие негативного воздействия на окружающую среду, возможность владения электрогенератором частным лицом или небольшой независимой компанией, что создает реальную конкуренцию на рынке электроэнергии. Использования интеллектуальных систем распределения электроэнергии позволяет малым ГЭС точно так же делиться излишками выработанного электричества. Только вот у низконапорной ГЭС генерация электроэнергии куда более стабильная, чем у ветряков и солнечных батарей. Единственная проблема — возможное пересыхание русла небольшой реки, но она возникает летом в солнечную погоду, когда много электроэнергии вырабатывают солнечные электростанции. Интеллектуальные системы позволят в такой ситуации перебросить излишки электроэнергии от солнечных электростанций туда, где в электричестве есть дополнительная потребность.

Преобразователи Pelamis

Так называемые «морские змеи» Pelamis представлены секциями. Они имеют цилиндрическую форму и соединяются между собой шарнирами. Сооружение в воде полузатоплено. Принцип работы волновой электростанции очень прост. Энергия вырабатывается в несколько этапов:

  1. Конструкция начинает изгибаться под влиянием волн.
  2. Гидравлические поршни, расположенные в местах соединения, начинают перемещаться, тем самым перекачивая масло через двигатели.
  3. Последние приводят во вращение электрогенераторы.
  4. Они вырабатывают электричество, которое до берега передают по кабелю, идущему от поплавка на дно.

Несколько подобных «змей» объединяют между собой, а электричество с них передают по одному кабелю. Мощность одной такой ВЭС достигает 21 МВт, что достаточно для снабжения электричеством 15 тыс. домов. Изобретение принадлежит специалистам компании «Океанское энергоснабжение» в Эдинбурге, где подобную ВЭС используют для энергообеспечения местных жителей. Из ее минусов называют:

  • значение среднегодового коэффициента мощности меньше 0,4;
  • завышенный уровень удельных капитальных затрат (суммы затрат при строительстве одного комплекса, деленной на единицу полученного продукта);
  • высокая материалоемкость (количество материалов на производство).
Интересное  Экологическая проблема мусора в россии и мире, мусорная реформа

Контурный плот Коккереля

В основе схемы работы волновой электростанции такого типа тоже лежит перемещение относительного друг друга секций, которые соединены шарнирами. Возникшие колебания принимают на себя насосы с электрогенераторами. Плот длиной 100 м, высотой 10 м и шириной 50 м, состоящий из 3 секций, выдает мощность до 2 тыс. кВт.

Эффективность модели достигает 45%, что меньше по сравнению с «уткой» Солтера, но зато конструкция плота схожа с судостроительной. Первое испытание изобретения было проведено в проливе Солент под городом Саутгемптон. Оно было частью проекта «Волновая ферма» фирмы Pelamis Wave Power. Для передачи электроэнергии на берег тоже используют кабель, расположенный на дне моря.

Солнечные электростанции: плюсы и минусы

Достоинства солнечных электростанций

  • СЭС — это возобновляемый источник энергии. Еще более 5 млрд. лет жители Земли могут не беспокоиться об истощении солнечного ресурса. По человеческим меркам, это неисчерпаемый энергоресурс, и развитие гелиотехнологий — это существенный вклад в жизнь будущих поколений.
  • Гелиосистемы могут работать в любой точке земли — как на экваторе, так и в Антарктиде. Температура воздуха роли не играет, необходим лишь доступ к солнечному свету.
  • СЭС оказывают минимальное воздействие на окружающую среду. Конечно, и изготовление, и транспортировка , и установка гелиосистем сопровождаются выбросами в атмосферу, но по сравнению с традиционными энергосистемами, эти малозначимые эффекты.
  • В гелиосистемах нет особых движущих узлов, кроме, например, сервопривода, который регулирует расположение панелей в пространстве. Поэтому гелиостанции работают бесшумно. Это позволяет устанавливать СЭС даже на крышах и стенах жилых домов.
  • Солнечные электростанции сохраняют свою эффективность 25 лет. После этого срока некоторые показатели снижаются, но станция продолжает работать. Обновлять систему можно частями, заменяя отдельные модули на новые.
  • Гелиосистемы применяются в разных сферах: они поставляют электричество в труднодоступные регионы, где нет централизованных электросетей; используются для опреснения воды; питают спутники на орбите и так далее.
  • Потенциал СЭС растет с развитием науки. Открытия в квантовой физике и нанотехнологиях позволят увеличить мощность гелиостанций. А инженерный разработки смогут превратить жилое здание в маленькую СЭС.

Недостатки солнечных электростанций

  • Эффективность СЭС зависит от времени суток и погодных условий. По ночам солнце не светит, а в условиях облачности свет слишком рассеянный. Хотя, например, вакуумные СЭС очень чувствительны к инфракрасному излучению, поэтому накапливают гелиоэнергию даже в пасмурную погоду (пусть и с более низкой эффективностью). В основном же, эта проблема солнечных электростанций решается за счет оборудования их аккумуляторами для запасания энергии и последующего ее использования в неблагоприятных для СЭС условиях.
  • Техническое обслуживание гелиостанций. Вне зависимости от типа, гелиопанели регулярно нуждаются в очистке от пыли. Кроме того, некоторые типы панелей могут перегреваться, поэтому они нуждаются в системах охлаждения или вентиляции.
  • Атмосфера над СЭС может нагреваться настолько, что пролетающие над ней птицы просто испаряются. По некоторым источником, над крупными гелиоустановками погибает одна птица каждые две минуты.
  • Хотя гелиоэнергетика считается, в целом, «зеленой» отраслью, изготовление гелиоустановок происходит с выбросом парниковых газов.
  • Современные гелиопанели обладают мощностью энергоносителя около 16-18 Ватт на квадратный метр. Этот показатель можно одновременно считать достоинством и недостатком солнечной электростанции. В этом солнечная энергетика превосходит другие альтернативные источники энергии, но уступает традиционным — углю, газу, нефти и атомной энергии.
  • Гелиоустановки все еще отличаются высокой стоимостью, и это главный спорный момент в их использовании. Это вызвано, например, применением в них редких и дорогих элементов: теллура и индия. Да и аккумуляторные батареи, которые стабилизируют поступление энергии от гелиоустановок, обходятся в немалые суммы. Вопрос стоимости чаще всего решается на государственном уровне, когда власти предлагают субсидии предприятиям и частным лицам для перехода на солнечное электроснабжение.

Если бы не стоимость, СЭС быстро бы стали мировым лидером в альтернативной энергетике.

Объяснение происхождения приливообразующих сил.

Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона. Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее). Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно бóльшую роль, чем массы тел.

Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны. Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.

Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры. В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30–60 см, но она значительно увеличивается при подходе к берегам материков или островов.

Интересное  Всё о переработке и утилизации отходов пенопласта

За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему. Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной – обратной. Первая из них всего на 5% выше второй.

Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.

Как работают волновые электростанции?

В основе работы ВЭС лежат преобразователи энергии волн из кинетической в электрическую. Такие устройства делятся на виды в зависимости от принципа действия и конструкции:

  1. «Осциллирующий водяной столб».
    Принцип работы – осуществление толчковых движений, заполняющих камеры с воздушными массами. При сжатии воздуха создается избыточное давление, подающее его на турбину и вращающее лопасти. Турбина вращается и передает воздух на генератор, вырабатывающий электроток.
  2. «Колеблющееся тело».
    Суть в том, что секции объединяются в конвертер, а между ними на подвижных платформах устанавливаются гидравлические поршни, на которые подсоединен гидравлический двигатель. Он заставляет вращаться электрогенератор. Раскачивающееся действие волн заставляет двигаться поршни, а они запускают двигатель и генератор. При этом объем вырабатываемой энергии волн зависит от их частоты, высоты, силы – на основе этих параметров вручную адаптируется ход штока, чтобы добиться рационального режима работы оборудования.
  3. «Искусственный атолл».
    Это бетонное сооружение, на корпусе которого размещена поверхность для наката волн. В середине находится бассейн, в него вода поднимается «набеганием волны» на наклонную поверхность, а потом через приемное отверстие поступает на гидротурбину.

Почему это выгодно?

Энергия, переносимая волной, возобновляемая. К тому же она способна покрыть 20% потребности в электроэнергии. Так что развивать это направление выгодно во всех отношениях, ведь природные ресурсы истощаются, уголь, нефть и газ однажды закончатся. Атомная энергетика не сможет решить все проблемы. Да и потенциальная опасность тормозит развитие АЭС.

Преимущества и недостатки

Использование потенциальной энергии волны – альтернатива нефти, газу, углю. Однако есть и другие плюсы ВЭС:

  • безопасная длительная работа без вреда экологии;
  • защитная функция за счет гашения волн у портов и берегов;
  • энергия стоячей океанской волны – возобновляемый ресурс;
  • низкая себестоимость вырабатываемого электричества.

Однако есть и минусы таких станций:

  • хотя волна океана переносит энергию, мощность большинства установок по ее выработке низкая;
  • работа ВЭС нестабильная, зависит от погоды и климата;
  • создается опасность для рыболовецких и иных судов.

Возобновляемая энергия в мире

Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.

Германия

40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.

Швеция

После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.

Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.

Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.

Исландия

У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.

Китай

В Китае самая мощная ГЭС в мире – «Три ущелья». По состоянию на 2018 год – это крупнейшее по массе сооружение. Её сплошная бетонная плотина весит 65,5 млн тонн. За 2014 станция произвела рекордные для мира 98,8 млрд кВт⋅ч.

Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.

Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.

Комментировать
0
27
Комментариев нет, будьте первым кто его оставит

;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

Это интересно

Утилизация лакокрасочных материалов Без рубрики
0 комментариев

Каково содержание золота в радиодеталях Без рубрики
0 комментариев

Контейнерная площадка для мусора Без рубрики
0 комментариев